An explicit sixth-order method with phase-lag of order eight for y″ = f(t, y)
نویسندگان
چکیده
منابع مشابه
A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS
In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new ...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملEmbedded explicit Runge-Kutta type methods for directly solving special third order differential equations y'''=f(x, y)
In this paper three pairs of embedded Runge–Kutta type methods for directly solving special third order ordinary differential equations (ODEs) of the form denoted as RKD methods are presented. The first is the RKD4(3) pair which is third order embedded in fourth-order method has the property first same as last (FSAL) whereby the last row of the coefficient matrix is equal to the vector output. ...
متن کاملExplicit sixth-order Bessel and Neumann fitted method for the numerical solution of the Schrödinger equation
An explicit sixth-algebraic-order method for the numerical solution of the Schrödinger equation for a neutral particle is developed. The new formula considered contains free parameters that are defined in order to integrate the spherical Bessel and Neumann functions exactly. Based on the new method and a method of Simos we obtained a variable-step algorithm. The results produced, based on the n...
متن کاملa sixth order method for solving nonlinear equations
in this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. periteration this method requires three evaluations of the function and one evaluation of its first derivative. a general error analysis providing the eighth order of convergence is given. several numerical examples are given to illustrate the efficiency and performance of the new ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1987
ISSN: 0377-0427
DOI: 10.1016/0377-0427(87)90113-0